Infrared Absorption Investigations of the $\mathrm{ALa}_{3} \mathbf{M g C o O}_{\mathbf{8}}(\boldsymbol{A}=\mathbf{C a}, \mathbf{S r}$, Ba) Oxides

JIN-HO CHOY
Department of Chemistry, Seoul National University, Seoul 15I-742, Korea
and GERARD DEMAZEAU and SONG-HO BYEON
Laboratoire de Chimie du Solide du CNRS, Universitè de Bordeaux I, 35I cours de la Libèration, 33405 Talence Cedex, France

Received October 27, 1988; in revised form January 30, 1989

Abstract

An infrared absorption investigation of the $\mathrm{ALa}_{3} \mathrm{MgCoO}_{8}$ samples ($A=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$) with $\mathrm{K}_{2} \mathrm{NiF}_{4}$-type structure has allowed the authors to evaluate the local distortion of the $\left(\mathrm{CoO}_{6}\right)$ octahedron. In this set of materials of composition similar to that of the perovskite layers the local distortion can be explained by chemical bonding competition along the c-axis. © 1989 Academic Press. Inc.

Introduction

The $A \mathrm{La}_{3} \mathrm{MgCoO}_{8}(A=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$ samples have been prepared using high oxygen pressures. The oxygen stoichiometry was determined indirectly by iodometric titration for cobalt ions, which was confirmed to be trivalent for all of the samples. It is assumed that the stoichiometry of cations is not changed during the sample preparation at high temperature $(1,2)$.

Powder X-ray diffraction patterns indicate that the structures have the $\mathrm{K}_{2} \mathrm{NiF}_{4}{ }^{-}$ type unit cell $\left(a_{0}, c_{0}\right)$. The presence of some weak superlattice lines show the existence of an enlarged unit cell ($a=a_{0} \sqrt{2}, c=c_{0}$) (Table I) resulting from a long-range $\mathrm{Mg}-$ Co ordering within the perovskite-type layers.

In the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ lattice the c_{0} / a_{0} ratio is in first approximation dependent on two factors: (i) the size effect of the nine-coordi-
nated cations along the c-axis (A, La), and (ii) the structural distortion of the $M \mathrm{O}_{6}$ octahedra in the perovskite layers.

If we compare the $\mathrm{SrLa}_{3} \mathrm{MgCoO}_{8}$ and La_{4} LiCoO_{8} oxides where Sr^{2+} and La^{3+} have close sizes $\left(d_{\mathrm{Sr}-\mathrm{O}}=2.688 \AA\right.$ and $d_{\mathrm{La}-\mathrm{O}}=$ $2.584 \AA$ with Sr^{2+} and La^{3+} in coordination 9) (3), the increase of the c_{0} / a_{0} ratio (3.27 to 3.33) (Table I) could be attributed to an enhancement of the structural elongation of the CoO_{6} octahedra. Such a phenomenon should result from the decrease of the covalency of the competing $M-O$ bond from $\mathrm{Mg}-\mathrm{O}$ to $\mathrm{Li}-\mathrm{O}$ (Fig. 1) (4). In the $A \mathrm{La}_{3} \mathrm{Mg}$ CoO_{8} series ($A=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$) the competing $\mathrm{Mg}-\mathrm{O}$ bond is always present, so that the c_{0} / a_{0} ratio depends on the steric or size effect $\left(d_{\mathrm{Ca}-\mathrm{O}}=2.547 \AA, d_{\mathrm{Sr}-\mathrm{O}}=2.668 \AA, d_{\mathrm{Ba}-\mathrm{O}}\right.$ $=2.818 \AA, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$ being all in coordination 9) (3).

Competition between the $A-\mathrm{O}$ and $\mathrm{Co}-\mathrm{O}$ bonds along the c-axis could lead to a varia-

TABLE I
Crystallographic Parameters for Some Co(III) Oxides with the $\mathrm{K}_{2} \mathrm{NiF}_{4}$-Type Structure

	$a_{0}(\AA)$	$c_{0}(\AA)$	$a=a_{0} \sqrt{2}(\AA)$	c_{0} / a_{0}
$\mathrm{CaLa}_{3} \mathrm{MgCoO}_{8}$	3.825	12.37	5.409	3.23
$\mathrm{SrLa}_{3} \mathrm{MgCoO}_{8}$	3.837	12.54	5.426	3.27
$\mathrm{BaLa}_{3} \mathrm{MgCoO}_{8}$	3.871	12.75	5.474	3.29
$\mathrm{SrIaCoO}_{4}$	3.80	12.51		3.33
$\mathrm{La}_{4} \mathrm{LiCoO}_{8}$	3.783	12.61	5.350	3.33

tion of the $\left(\mathrm{CoO}_{6}\right)$ elongation (Fig. 1) (4). For the same $A \mathrm{La}_{3} \mathrm{MgCoO}_{8}$ set $(A=\mathrm{Ca}$, $\mathrm{Sr}, \mathrm{Ba})$ the elongation of the $\left(\mathrm{CoO}_{6}\right)$ octahedron depends actually on two factors: steric effect and chemical bonding along the c axis. The aim of the present IR absorption study is to evaluate such a local distortion.

Infrared Absorption Investigation

The IR spectra for the polycrystalline samples $A \mathrm{La}_{3} \mathrm{MgCoO}_{8}(A=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$ in CsBr pellets were obtained at $25^{\circ} \mathrm{C}$ as given in Fig. 2.

Fig. 1. Chemical bonding competition in the $x \mathrm{O} y$ plane and along the Oz axis in the $\mathrm{K}_{2} \mathrm{NiF}_{4}$-type structure.

Fig. 2. IR spectra for the series $A \mathrm{La}_{3} \mathrm{MgCoO}_{8}[A=$ $\mathrm{Ca}(\mathrm{a}), \mathrm{Sr}(\mathrm{b}), \mathrm{Ba}(\mathrm{c})]$.

In ordered perovskites of the type $A_{2} \mathrm{BB}^{\prime} \mathrm{O}_{6}$, the shift of oxygen ions toward the more highly charged B cation was observed (5-9). Blasse et al. reported that such a highly charged $B O_{6}$ octahedron acts as an independent group (10,11). Similarly, with perfectly symmetrical surroundings in the $x y$-plane (Fig. 1), the oxygen ions are expected to be shifted toward the Co^{3+} ion because of its high charge. Although an exact IR analysis for $\mathrm{ALa}_{3} \mathrm{MgCoO}_{8}(A=\mathrm{Ca}$, Sr, Ba) oxides should be carried out in terms of the full crystal group (12), we assume that the binding forces in the CoO_{6} octahedron are large compared to the MgO_{6} octahedron, and the CoO_{6} octahedron is decoupled from the remainder of the lattice. In this case the internal $\left(\mathrm{CoO}_{6}\right)$ and external modes should be sufficiently separated.

Group theoretical considerations for the
elongated and the undistorted ($M \mathrm{O}_{6}$) octahedron, with respectively $D_{4 h}$ and O_{h} symmetry, lead to 15 normal vibration modes in the $D_{4 h}$ symmetry,

$$
\begin{aligned}
\Gamma D_{4 h}=2 A_{1 g}+B_{1 g}+ & B_{2 g}+E_{g} \\
& +2 A_{2 u}+B_{2 u}+3 E_{u},
\end{aligned}
$$

and also 15 in O_{h} symmetry,

$$
\Gamma O_{h}=A_{1 g}+E_{g}+2 T_{1 u}+T_{2 g}+T_{2 \mu} .
$$

From these representations we can deduce the list of normal modes grouped according to the IR and Raman activities of the fundamental vibrations (Table II). Therefore, we may expect either five bands or two bands in the IR absorption spectra of the $\left(\mathrm{CoO}_{6}\right)$ octahedra for the respective $D_{4 h}$ and O_{h} symmetry. Lowering of the local symmetry will increase the number of infrared active modes, and IR spectroscopy can evaluate thus the evolution of the local ($M \mathrm{O}_{6}$) distortion.

In the IR spectra of the $\mathrm{ALa}_{3} \mathrm{MgCoO}_{8}$ phases $(A=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$, the band located in the region $670-715 \mathrm{~cm}^{-1}$ is at too high a frequency to represent a contribution from the Co-O bonds (internal modes). It can be attributed to the $A-O$ bonds along the c axis. As expected there are relatively large shifts of this band toward lower wavenumbers as the A cation ($\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$) gets heavier. This indicates a decreasing bond strength of $A-\mathrm{O}$ from Ca to Ba , which induces a strengthening of the competing axial $\mathrm{Co}-\mathrm{O}$ bond.

The Co-O asymmetric vibration band splits into a doublet with $\bar{\nu}=620$ and 540 cm^{-1} in $\mathrm{CaLa}_{3} \mathrm{MgCoO}_{8}$ and $\mathrm{SrLa}_{3} \mathrm{MgCoO}_{8}$. Such a splitting suggests a $D_{4 h}$ symmetry of each isolated $\left(\mathrm{CoO}_{6}\right)$ octahedron. In comparison for $\mathrm{BaLa}_{3} \mathrm{MgCoO}_{8}$, it is limited to a single strong shoulder ($\bar{\nu}=500 \mathrm{~cm}^{-1}$). One may deduce that the $\left(\mathrm{CoO}_{6}\right)$ octahedron is much closer to a pure O_{h} symmetry as the A cation becomes more basic from Ca to Ba . It had been confirmed that the shoulders below $400 \mathrm{~cm}^{-1}$ are attributed to the other

TABLE II
Infrared and Raman Activities of the Fundamental Vibrations

Symmetry	Infrared active	Raman active	Inactive
$D_{4 h}$	$2 A_{2 u}, 3 E_{u}$	$2 A_{1 g}, B_{1 g}, B_{2 g}, E_{g}$	$B_{2 u}$
O_{h}	$2 T_{1 u}$	$A_{1 g}, E_{g}, T_{2 k}$	$T_{2 u}$

external modes (10), which can be assigned if normal mode analyses of full crystal groups are performed. But those modes are believed not to alter our conclusion significantly.

Even though the c_{0} / a_{0} ratio, which is determined by X-ray diffraction analysis, is increased by substitution of Ba (3.29) for Ca (3.23), which implies the strong tendency of tetragonal elongation in CoO_{6} octahedron, such a tendency seems to be strongly compensated by the contraction in the axial Co-O bond due to the gradual increase of basicity from Ca to Ba (increase in covalent bonding character of $\mathrm{Co}-\mathrm{O}$ bond). In fact, the IR investigation points out a decrease of the local $\left(\mathrm{CoO}_{6}\right)$ elongation when the A cation becomes larger. Such a phenomenon results from competition along the c-axis between weakening $A-O$ and strengthening Co-O bonds. The X-ray diffraction study indicates, however, that the steric effect of the alkali earth cation is the prevailing factor for the c_{0} / a_{0} variation and low-spin Co(III) \rightarrow high-spin $\mathrm{Co}($ III $)$ transition.

The transition from a low-spin $\left({ }^{1} A_{1 g}\right)$ to a high-spin (${ }^{3} T_{2 g}$) ground state of $\mathrm{Co}($ III) had been studied in perovskite oxides such as $T \mathrm{CoO}_{3}(13)(T=$ rare earth $)$ or $\mathrm{K}_{2} \mathrm{NiF}_{4}-$ type oxides such as $\mathrm{SrLaCoO}_{4}$ (14) and $\mathrm{La}_{4} \mathrm{Li}$ CoO_{8} (15).

For O_{h} symmetry the energy of the cubic field term vs q / B can be given in a TanabeSugano diagram (16).

For a strong $D_{4 h}$ elongation a splitting of the high-energy ${ }^{3} T_{2 g}$ term can be achieved (Fig. 3). The ${ }^{3} B_{2 g}$ term has an energy close

Fig. 3. Evolution of the relative stabilities of the spectroscopic terms vs structural clongation for a d^{6} configuration in octahedral surroundings.
to that of the ${ }^{1} A_{1 g}$ term. If the local elongation of the $\left(\mathrm{CoO}_{6}\right)$ octahedron is small such an intermediate electronic configuration should have a higher energy (15).

The magnetic susceptibility measured with a Faraday balance between 4.2 and 800 K is given for each $\mathrm{ALa}_{3} \mathrm{MgCoO}_{8}$ phase

(Fig. 4). The maximum of χ_{M}^{-1} observed at about $475 \mathrm{~K}(\mathrm{Ca}), 400 \mathrm{~K}(\mathrm{Sr})$ and $380 \mathrm{~K}(\mathrm{Ba})$ is the result of an electronic transition of Co (III) from the diamagnetic ${ }^{1} A_{1 g}$ ground term to the paramagnetic ${ }^{3} B_{2 g}\left({ }^{3} T_{2 g}\right)$ and/or ${ }^{5} E_{g}\left({ }^{5} T_{2 g}\right)$ terms.

From the magnetic data a recent spintransition study of the $\mathrm{SrLa}_{3} \mathrm{MgCoO}_{8}$ phase based on the model proposed by Schlichter and Drickamer (I7) confirmed the existence of the ${ }^{1} A_{1 g} \rightarrow{ }^{5} T_{2 g}$ transition (1).

Because of the size difference between the low-spin and high-spin Co(III) species $\left(r_{\mathrm{Co}(\mathrm{III}) \mathrm{LS}}=0.50 \AA(13)\right.$ and $r_{\mathrm{Co}(\mathrm{III}) \mathrm{HS}}=0.63 \AA$ (18)), the ${ }^{1} A_{1 g} \rightarrow{ }^{5} T_{2 g}$ transition depends on (i) the steric effect and (ii) the value of the local crystal field for cobalt. Due to increasing basicity from Ca to Ba , this local crystal field should decrease slightly.

The evolution of the spin-transition temperature from $\mathrm{CaLa}_{3} \mathrm{MgCoO}_{8}(475 \mathrm{~K}$) to $\mathrm{BaLa}_{3} \mathrm{MgCoO}_{8}(380 \mathrm{~K})$ implies that the lattice dilation associated with the A cation expansion is predominant on the expected Co-O bond effect in initiating the LS \rightarrow HS transition.

On the contrary the smaller elongation of the $\left(\mathrm{CoO}_{6}\right)$ octahedron has the opposite influence, as it should make the Jahn-Teller effect which is associated with the LS \rightarrow HS transition more difficult. We may conclude that the A size effect is largely prevailing on the influence of the higher symmetry observed for the $\left(\mathrm{CoO}_{6}\right)$ octahedron as the A cation is enlarged.

Conclusion

An infrared spectroscopic study of the $A \mathrm{La}_{3} \mathrm{MgCoO}_{8}$ oxides ($A=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$) with the $\mathrm{K}_{2} \mathrm{NiF}_{4}$-type structure has led to an evaluation of the local influence of the size of the A cation. This evaluation and the strengthening of the $\mathrm{Co}-\mathrm{O}$ bond along the c-axis are discussed as factors accounting for the variation of the c_{0} / a_{0} ratio and for the temperature of the LS \rightarrow HS transition.

The first one is in both cases the leading factor.

Acknowledgment

The authors thank Professor Paul Hagenmuller for valuable participation in the discussions.

References

1. G. Demazeau, M. Pouchard, Li-Ming Zhu, and P. Hagenmuller, Z. Anorg. Allg. Chem. 555, 64 (1987).
2. Li-Ming Zhu, Thesis, Bordeaux (1987).
3. P. Poix, J. Solid State Chem. 31, 95 (1980).
4. Li-Ming Zhu, G. Demazeau, M. Pouchard, and P. Hagenmuller, J. Solid State Chem., in press.
5. E. G. Steward and H. P. Rooksby, Acta Crystallogr. 4, 503 (1951).
6. D. E. Cox, G. Shirane, and B. C. Frazer, J. Appl. Phys. 38, 1459 (1967).
7. C. P. Khattak, D. E. Cox, and F. F. Y. Wang, in "Proceedings, AIP Conference, No. 10," p. 674 (1973).
8. C. P. Khattak, D. E. Cox, and F. F. Y. Wang, J. Solid State Chem. 13, 77 (1976).
9. C. P. Khattak, D. E. Cox, and F. F. Y. Wang, J. Solid State Chem. 17, 323 (1976).
10. G. Blasse and A. F. Corsmit, J. Solid State Chem. 6, 513 (1973).
II. A. F. Corsmit, H. E. Hoefdraad, and G. Blasse, J. Inorg. Nucl. Chem. 34, 3401 (1972).
11. T. Shimanouchi, M. Tsuboi, and T. Miyazawa, J. Chem. Phys. 35, 1597 (1961).
12. G. Demazeau, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 9, 202 (1974).
13. G. Demazeau, Ph. Courbin, G. Le Flem, M. Pouchard, P. Hagenmuller, J. L. Soubeyroux, I. G. Main, and C. A. Robins, Nouv. J. Chim. 3(3), 171 (1979).
14. G. Demazeau, M. Pouchard, M. Thomas, J. F. Colombet, J. C. Grenier, L. Fournes, J. L. Soubeyroux, and P. Hagenmuller, Mater. Res. Bull. 15, 461 (1980); 16, 533 (1981).
15. Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 753 (1954).
16. C. P. Slichter and H. G. Drickamer, J. Chem. Phys. 56, 2142 (1972).
17. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).
